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SUMMARY 

Footrot is a highly contagious hoof disease of sheep, the expression of which depends on 

environmental conditions and the presence of infective strains of bacteria. Footrot scored from field 

exposure is, therefore, a potentially difficult trait to analyse across time and production 

environments. This study explores the use of pre-analysis transformation techniques to account for 

the disease incidence and pattern of scores obtained, using footrot as an example. A biological 

transformation, where the phenotypes were transformed to a similar incidence level based on a non-

linear transition of scores over time produced the highest rank correlation of the sire’s breeding 

values across challenges compared to more traditional statistical transformation techniques. The 
results suggest that using a transformation based on biological information is likely to improve the 

estimation of breeding values for footrot.  

 

INTRODUCTION 

Footrot is a highly contagious and difficult to manage hoof disease in sheep that begins with 

interdigital dermatitis and progresses to separation of the hard horn from the foot (Mulvaney 2013). 

Infection and progression of footrot within the flock is heavily influenced by the prevailing weather 

conditions and the presence of the infective bacteria Dichelobacter nodosus, with onset occurring 

approximately 5 days after exposure in susceptible animals (Nieuwhof et al. 2009). 

Footrot records from field data are collected as a result of uncontrolled natural footrot challenges. 

Consequently, the incidence of footrot (affected vs unaffected) and the distribution of scores for 
affected animals, affecting means and variances, will vary within the data used for genetic 

evaluation. These factors result in sire breeding values (SBV) that may not accurately predict 

progeny performance when faced with a subsequent footrot challenge under different environmental 

conditions. To overcome the heterogeneity across challenges there are multiple options including: 

arithmetic transformations, scaling observations with the phenotypic standard deviation, or fitting 

multiplicative mixed model equations (Huisman et al. 2016). There is an assumption associated with 

many of these transformation techniques that the data are normally distributed and that the standard 

deviation decreases as the mean nears the extremes of the categorical scores. However, these 

assumptions are not valid for disease traits such as footrot, where variation in the animal’s 

susceptibility means that the phenotypic variation within a challenge is unlikely to be normally 

distributed and can become heavily dominated by a single score. 

This paper explores the use of pre-analysis transformations to adjust for differences in disease 
incidence and the distribution of scores between footrot challenges, using New Zealand Merino 

central progeny test data from 2013 and 2014. 

 

MATERIALS AND METHODS 

In each of 2013 and 2014, approximately 2,000 commercial fine wool NZ Merino ewes were 

artificially inseminated to 40 Merino type rams (one link ram). Rams were perceived as trait leaders 

for footrot or other key production traits and considered to be widely used and linked to the NZ 
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Merino industry. The commercial ewe flock (no pedigree available) were aged between 2 and 6 

years and were declared free of footrot at the start of the trial. The ewes and resulting progeny were 

managed in Waipara, New Zealand. The 2014 progeny were not mothered up and thus dam, birth 

type and rear type were unknown for these animals. 

The project was designed to move the yearling wether progeny (n= 1,300) in the spring-summer 
period to a footrot-infected property where they would be run with infected sheep on waterlogged 

paddocks. Each foot was scored on a 5 point scale, with 0 being not affected and 1 to 5 representing 

different degrees of severity of foot damage, from water maceration (1) to chronic footrot (5) 

(Mulvaney 2013). The footrot challenge was deemed to have occurred when 20 to 30% of a weekly 

subsample were considered underrun. The 2014 progeny were recorded twice (20 day difference) 

during the challenge period (Table 1). An unexpected footrot outbreak occurred in the 2013 progeny 

in autumn at Waipara, animals were scored and subsequently treated. The trait analysed in this study 

was the average footrot score (x̅fs) of all four feet (0-5). 

 

Table 1: Summary of footrot records for the 2013 and 2014 progeny 

 

Drop Challenge Records Mean SD 

Proportion of feet in category 

0 1 2 3 4 5 

2013 Autumn 725 2.75 1.40 0.01 0.32 0.10 0.07 0.49 0.01 
 Spring 715 1.99 1.59 0.09 0.48 0.18 0.05 0.04 0.17 
2014 Summer 621 2.92 1.07 0.03 0.12 0.07 0.45 0.33 0.00 
 +20 days 621 3.37 1.39 0.08 0.11 0.00 0.03 0.72 0.05 

 

The heritability and sire breeding values were estimated from a sire model using ASReml 

(Gilmour et al. 2009). The fixed effects model fitted included birth type (1,2,3,4+), rearing type 

(1,2,3+), age of dam (linear and quadratic covariates), age (linear) and year of birth effect (YOB) 

(2). To account for genetic diversity between sires, sire breed and strain (Dohne, Corriedale, 

Polworth, South African Meat Merino, Merino and Poll Merino) were fitted as a random term and 

the genetic group proportions (10 groups) (Brown and Swan 2016) of the sire were fitted as fixed 

effects. The analysis was undertaken using a single record for each animal, with the 2013 progeny 

records coming from the spring challenge and the 2014 progeny records coming from the summer 

challenge (Table 1), except when noted.  

To account for the incidence of footrot within each challenge several pre-analysis transformation 

techniques were explored. These include (1) no adjustment (transformed observation y* = x̅fs), (2) 
fitting a mixed model allowing for a heterogeneous residual applied to each challenge, (3) 

transformation to a mean score of 2.5 (y* = (x̅fs / x̅year of year cohort) × 2.5), (4) standardised to a 

mean of 0 and a SD of 1 (y* =((x̅fs / x̅year) / SD of year cohort)), (5) standardised  to a mean of 0 and 

a weighted SD that accounts for the decline in variation as the mean nears the extremes (y* = ((x̅fs / 

x̅year)/ SDyear) × weighted SDyear), and (6) transformation based on a biological model for the 

progression of scores over time. Under the assumption that the rate of progression between scores 

is not equal and that simple linear transformations of average values are therefore inaccurate, we 

developed a biologically based transformation. Data from the 2014 challenge provided 2 scoring 

events 20 days apart. From the two time points recorded, a transition matrix based on probability of 

change could be estimated (Table 2). Using this transition matrix the challenge data for each foot 

could be progressed forward to the nth day to achieve a common incidence (affected vs unaffected) 
across challenges, based on the weighted probability of change from each score. This generated for 

each foot a transformed score (rounded to an integer) that was then averaged to produce y*. Based 

on the very high genetic correlation between the two time points (0.99 ± 0.23) and the very low 

heritability for change in score (0.08 ± 0.09), it was assumed that the genetic merit of the sires was 
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constant and differences in incidence between scoring events were predominantly due to the 

prevailing production environment. To test the biological transformation, the 2013 data from both 

spring and autumn events was transformed based on the biological model (developed from 2014 

data) to a similar incidence to 2014 challenge (approximately 15% of feet were scored 0 or 1). 

 

Table 2: Probability of a foot transitioning from one score to another score for the front and 

back feet (parentheses) after 20 days during the 2014 challenge.  

 

 Front footrot score 20 days later Back footrot score 20 days later 

Footrot score 0 1 2 3 4 5  0 1 2 3 4 5 

0 0.51 0.46 0.01 0.00 0.01 0.00  0.20 0.80 0.00 0.00 0.00 0.00 

1 0.42 0.49 0.00 0.01 0.07 0.00  0.26 0.37 0.00 0.11 0.26 0.00 

2 0.05 0.23 0.03 0.08 0.60 0.02  0.04 0.19 0.03 0.09 0.65 0.00 

3 0.00 0.00 0.00 0.11 0.84 0.05  0.00 0.00 0.00 0.12 0.84 0.04 

4 0.00 0.00 0.00 0.00 0.82 0.18  0.00 0.00 0.00 0.00 0.93 0.07 

5 0.00 0.00 0.00 0.00 0.00 1.00  0.00 0.00 0.00 0.00 0.00 1.00 

 

RESULTS AND DISCUSSION 

The impact of alternative models or transformations on parameter estimates are presented in 

Table 3. The heritability of footrot ranged from 0.11 to 0.35 across challenges with an average of 

0.19 and were found to not be significantly different across transformation models. The additive 

variance was relatively similar across all models and transformations. It should be noted that the 

additive variance was greatest when the data was transformed to a common mean or standardised to 

a common SD, as in all cases the manipulation of raw data values lead to an increase in the 

phenotypic variation of the 2013 and 2014 challenges, respectively. Allowing for heterogeneous 

residuals highlighted that the variation in the 2013 spring challenge had almost 4 times the variation 

of the 2014 summer challenge. In contrast, the biological transformation of the 2013 data to a 
common incidence resulted in no significant change to the variation in scores. Adjusting to a 

common incidence and not a common mean implies that the original distribution of the raw data 

remains informative and is reflected after the biological adjustment. 

 

Table 3: Impact of transformation of footrot records on parameter estimation 

 

Model/Transformation 

2013 Progeny 2014 progeny Residual 

Variance 

Additive 

Variance Heritability Mean SD Mean SD 

(1) No adjustment 1.99 1.09 2.92 0.60 0.744 0.150 0.19 +/- 0.07 
(2) Heterogeneous Residual 1.99 

 

1.09 

 

2.92 

 

0.60 

 

(2013) 1.116  

(2014) 0.327  

0.126 0.11 +/- 0.04 

0.35 +/- 0.12  
(3) Transformed  2.50 1.36 2.50 0.51 1.057 0.194 0.18 +/- 0.07 
(4) Standardised 0.00 1.00 0.00 1.00 0.930 0.228 0.23 +/- 0.07 
(5) Weighted Standardisation 0.00 1.09 0.00 0.61 0.767 0.155 0.19 +/- 0.07 
(6) Biological Transformation 2.83 1.09 2.92 0.60 0.778 0.138 0.17+/- 0.07 

*standard errors ranged from 0.04 to 0.07 for the variance estimates and for heritability from 0.07 to 0.12  

 

Pre-analysis transformations are generally used to lessen the impact of the variation in the 

outcomes from uncontrolled challenge or scoring events on the spread and rank of sire breeding 

values. Therefore, under the assumption that the genetic correlation between two separate challenge 

events should also be high, the appropriate pre-analysis transformation should result in similar SBVs 

for the 2013 sires, regardless of whether the progeny’s performance was recorded in the autumn or 

spring challenge data. The rank correlation for the 2013 sires estimated from the autumn vs spring 
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challenge was 0.56 when the data was untransformed (Figure 1a). Rank correlations between the 

two challenges were not improved by fitting a heterogeneous residual (model 2) (0.51), or when the 

data were transformed to a common mean (3) (0.49), standardised (4) (0.48), or weighted 

standardisation (5) (0.49). However, when the challenges were transformed to the same incidence 

of footrot (~15% uninfected) based on the transition matrix (biological transformation) the rank 
correlation increased (0.81) (Figure 1b). These results suggest that the biological transformation, 

which adjusted the challenges to a similar disease incidence, resulted in SBVs which were a truer 

representation of the sires’ merit, both in rank and relative superiority. 

 

 
Figure 1: Breeding values for the sires of the 2013 progeny estimated from the autumn and 

spring challenges from the raw footrot data (a) and when biologically transformed to a similar 

disease incidence (15% of feet uninfected) (b) 

 

CONCLUSION 

These results suggest that pre-analysis transformations based on a non-linear disease progression 

improved comparison across sires when data from progeny are from uncontrolled challenges, 
differing both in incidence at scoring and the distribution of scores. Whilst the proposed biological 

transformation can be used to transform data to similar incidence levels, the analysis of footrot is 

still dependent on the challenge being strong enough for the variation in sires to be expressed. The 

bounded nature of the scoring system means that, at both ends of the challenge, the phenotypic 

variation will compress, which cannot be overcome by the biological transformation. Further 

research into the use of a transition matrix to develop suitable data transformations and the influence 

of genetics on the progression of footrot needs to occur as more data becomes available. 
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